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Abstract Emotions are a crucial element for personal and

ubiquitous computing. What to sense and how to sense it,

however, remain a challenge. This study explores the rare

combination of speech, electrocardiogram, and a revised

Self-Assessment Mannequin to assess people’s emotions.

40 people watched 30 International Affective Picture

System pictures in either an office or a living-room envi-

ronment. Additionally, their personality traits neuroticism

and extroversion and demographic information (i.e., gen-

der, nationality, and level of education) were recorded. The

resulting data were analyzed using both basic emotion

categories and the valence–arousal model, which enabled a

comparison between both representations. The combina-

tion of heart rate variability and three speech measures

(i.e., variability of the fundamental frequency of pitch (F0),

intensity, and energy) explained 90% (p \ .001) of the

participants’ experienced valence–arousal, with 88% for

valence and 99% for arousal (ps \ .001). The six basic

emotions could also be discriminated (p \ .001), although

the explained variance was much lower: 18–20%. Envi-

ronment (or context), the personality trait neuroticism, and

gender proved to be useful when a nuanced assessment of

people’s emotions was needed. Taken together, this study

provides a significant leap toward robust, generic, and

ubiquitous emotion-aware computing.

Keywords Ubiquitous computing � Emotion �
Unobtrusive sensing � Speech features � Heart rate

variability � Personality

1 Introduction

It has been 40 years since Skinner [88] said: The appli-

cation of the physical and biological sciences alone will

not solve our problems because the solutions lie in another

field. … It is not enough to ‘‘use technology with a deeper

understanding of human issues,’’ or to ‘‘dedicate technol-

ogy to man’s spiritual needs,’’ or to ‘‘encourage technol-

ogists to look at human problems.’’ … What we need is a

technology of behavior. … But a behavioral technology

comparable in power and precision to physical and bio-

logical technology is lacking … (p. 4–5).

Since Skinner’s words [88], much has changed, but even

more has not. On the one hand, phenomena of private

experience, whether they be characterized as mental or

emotional, conscious or unconscious, are inaccessible to

direct public observation; the actions of living organisms,

on the other hand, can be observed directly and studied in

relation to antecedent conditions in the same way as the

phenomena treated in other sciences (p. 3) [72]. This was

the case four decades ago, and still is the case, despite the

impressive progress of cognitive sciences and neuroscience

[85] (e.g., brain imaging techniques [60, 104] and brain–

computer interfaces [8, 17, 91]). On the other hand, tech-

nologies ranging from biosensors to robots have become
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smaller, even miniaturized [70], and can be integrated into

virtually all products (e.g., clothes [89] or our homes

[101]). Consequently, new branches of science and engi-

neering have emerged, such as personal and ubiquitous

computing (UbiComp) [50], ambient intelligence (AmI)

[20], pervasive computing [12]), wearable computing [2],

and the Internet of Things [34, 48] (also known as physical

computing, haptic computing, and things that think).

The true potential of the emerging branches of science

such as UbiComp and AmI is more than an engineering

paradigm. The envisioned systems can only be realized if

human behavior can also be analyzed automatically. Sub-

sequently, the resulting knowledge can be utilized for the

integration of humans’ inputs and outputs with those of

their media. This yields intuitive computing and brings us

to one of its core notions: (human) emotions. This has long

been accepted by psychologists but has only been

embraced by science and engineering, since Picard’s book

Affective Computing in 1997 [79]. As a result, ambient

sensing of emotions [97], emotion-aware consumer prod-

ucts [96], and affective interaction [31] have been pro-

posed. This is what this article will be about.

Emotions can be transmitted either overtly (e.g., by the

face, the body, or the voice), covertly (e.g., biosignals), or

in a combination of both [26]. On the one hand, the

complex nature of emotion is illustrated by the absence of

an integral model of (human) emotions (cf. [26]). So, it is

still largely unknown what cues humans process in

determining others’ emotional states. On the other hand,

the processing of signals related to emotions has been a

topic of research for more than a century [25, 51, 57].

Until the end of the twentieth century, attention to this

relation, however, was limited and, hence, so was progress

[26] (cf. [24]).

In this article, five issues will be addressed that are

troubling the development of ubiquitous emotion

awareness:

1. A broad range of physiological signals, speech, and

computer vision techniques are employed to determine

people’s state of emotions. Regrettably, despite the

rapid growth of such techniques, these methods are

either obtrusive, sensitive to noise, or both [32, 94].

2. What emotions are, how they can be described, and

how they are expressed remain difficult to define [25,

38, 57, 72].

3. Although it is generally agreed that environment (or

context) is of the utmost importance [7], laboratory

and field research in this field are seldom compared

[39, 53, 99].

4. Personality traits are seldom taken into account (e.g.,

[43, 80, 109]), although widely recognized as being

important [67, 90, 99].

5. Demographic information (e.g., age [63, 83], gender

[49, 104], culture [11, 35, 69], social class [35, 69],

and nationality [68]) and ethnics [11, 87] are known to

possibly influence experienced emotions and their

accompanying physiological responses. Nevertheless,

this basic information is often disregarded.

By addressing the combination of these issues, we

expect to contribute significantly to emotion-aware

technology.

In the next section (Sect. 2), we will briefly introduce

the construct emotion and two models of emotion that are

often used in emotion-aware computing. Next, in Sect. 3,

we will discuss signals of emotion and introduce the hybrid

approach chosen in this research. Subsequently, in Sect. 4,

we will introduce the study conducted. Section 5 will

describe how the different types of signals are processed.

Next, the results and their interpretation will be described

in Sect. 6 We will close, in Sect. 7, with a general

discussion.

2 Emotions

A complete bookstore could easily be filled with books and

articles on emotion and related topics. Reviewing this vast

amount of literature falls beyond the scope of the current

article. Moreover, excellent handbooks (e.g., [25, 57]) and

review articles (e.g., [24, 38]) have already been published

on this topic. So, no overview of emotion theories and their

levels of description will be provided. Instead, we will

work toward a stipulative definition of emotion. This is

necessary as there is still no consensus on a definition of

‘‘emotion,’’ and theorists and researchers use ‘‘emotion’’ in

ways that reflect different meanings and functions (p. 363),

as Izard recently stated [38]. This overview takes up a

special section of the journal Emotion Review as founda-

tion [38].

2.1 On defining emotions

In the search for consensus on what emotion is, Izard [38]

identified six key structures of emotion, namely: (1) neural

systems, (2) response systems, (3) feelings, (4) expressive

behavior, signalling systems, (5) antecedent cognitive

appraisal, and (6) cognitive interpretation of feelings.

Moreover, seven functions of emotions were identified: (1)

facilitates attention and direction of responses, (2) moti-

vates cognition and action and provides emotion informa-

tion [73], (3) alters the salience or value of an event to

facilitate adaptive associations, (4) contributes to emotion

and behavior regulation, well-being, and the safeguarding

of sensitivities and concerns, (5) social signaling and
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communication, (6) provides a neural (often conscious)

workspace for assembling solutions, and (7) different

emotions (and their structures) have different functions.

Together, these aspects and functions of emotion provide a

knowledge space we can work with.

Izard [38] concludes by stating that Emotion consists of

neural circuits (that are at least partially dedicated),

response systems, and a feeling state/process that moti-

vates and organizes cognition and action [73]. Emotion

also provides information to the person experiencing it,

and may include antecedent cognitive appraisals and

ongoing cognition including an interpretation of its feeling

state, expressions or social–communicative signals, and

may motivate approach or avoidant behavior, exercise

control/regulation of responses, and be social or relational

in nature. (p. 367) [38]. This does not provide us with a

precise definition of emotion as a unitary concept. How-

ever, it does provide us something to hold on to and work

with. Moreover, more than anything else, it emphasizes

both the complexity of emotions and their ubiquitous

nature.

2.2 Modeling emotion

As we outlined in the previous section, emotions are

complex to untangle. However, there is general consensus

on the neural systems underlying them, which are at least

partly dedicated [38]. This having been said, emotion

recognition remains challenging for both man and machine.

For example, different emotions and different structures of

each emotion have different functions [38], and neural

systems are influenced by much more than solely emotions

(e.g., imagine what happens to your heart rate when you

start walking).

For engineering practice, a workable model of emotion

needs to be adopted. However, there are good arguments to

state that such a model is beyond science’s current reach.

Nevertheless, some model needs to be chosen; otherwise,

signals of emotion cannot be processed and classified and

our endeavor ends prematurely. Psychology distinguishes

two emotion models: (1) discrete emotion categories and

(2) a (2D or 3D) continuous dimensional model of emotion.

The discrete emotion categories originate from Darwin’s

pioneering work on basic emotions. The theory behind this

model assumes that these emotion categories are hard-

coded into our neural system and recognized universally

[19, 28, 56] (cf. the debate on color categories as unveiled

by Berlin and Kay [82]). Although still a topic of debate,

most consensus exists on the six emotion categories hap-

piness, sadness, surprise, fear, anger, and disgust.

The (continuous) dimensional model of emotion

assumes orthogonal unipolar or bipolar dimensions that

together can describe the emotional state a person is in.

Most often Russel’s circumplex or valence–arousal (VA)

model of emotions [18, 27, 33, 66, 84] is adopted. This

distinguishes arousal and valence (i.e., pleasure/displea-

sure) as two orthogonal bipolar factors that describe emo-

tions. The dimensional VA model has frequently been

extended [14, 33]; for example, to enable the incorporation

of mixed emotions [16, 68, 96, 102]. These extensions

often incorporate two unipolar valence dimensions: one for

positive and one for negative valence, instead of one

bipolar valence dimension. Such extended VA models

incorporate three dimensions, instead of two. This

approach was also adopted for the current research.

3 Ubiquitous signals of emotion

As we already mentioned in the introduction, the tech-

niques usually employed to process signals of emotion are

often either obtrusive, sensitive to noise, or both. We will

now discuss each of the three signals: biosignals, computer

vision, and speech and identify their pros and cons. Next,

we will introduce the hybrid approach adopted in the

research described in this article.

Features of physiological signals (or biosignals) are

known to indicate emotions [15, 32, 95]; however, mea-

surement of such signals is often experienced as obtrusive

by participants.; for example, facial electromyography

(EMG) requires sensors to be placed on the face, and

electrodermal activity (EDA; or galvanic skin response,

GSR) requires sensors to be placed on participants’ hands

or alternatively on their foot soles. Not only is their

application obtrusive and do they prevent normal func-

tioning but these sensors also frequently drop off when

used in ambulatory settings. Until recently, this has pre-

vented biosignals being incorporated into consumer prod-

ucts. However, with the progress of wearable computing

and wireless sensing technologies in the last decade, this

problem quickly vanishes [2, 23, 37, 58, 64, 75, 77, 106,

110]. In parallel, biosignal recording, even with a certain

amount of obtrusiveness, is embraced by the general public

in Western societies (e.g., real-time ECG processing to

guide athletes). Hence, the path toward biosignal-based

emotion-aware computing would seem to be paved.

An alternative for biosignals are computer vision tech-

niques. These can be employed both as a static (i.e., image)

and a dynamic technique (i.e., video) [36, 103, 107, 109].

Moreover, one can choose to conduct markerless record-

ings or to use markers, which facilitate processing the

images or videos. Most research on emotion-aware com-

puting incorporates recordings of the face, but body lan-

guage analysis also has been shown to be a rich source of

information (e.g., movements and gestures) [6, 36, 47, 61].

Although appealing, computer vision techniques are only
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usable for emotion recognition in very stable environ-

ments; for example, without occlusion, in stable light

sources, and with the users sitting at a desk or on a couch

[99, 103]. Hence, in practice, in ambulatory settings,

computer vision-based emotion-aware computing is not

feasible.

Speech-based emotion-aware computing is probably the

most exhaustively studied technique of this triplet. Its

early studies included humans as classifiers, followed by

advanced statistical procedures, and, subsequently, auto-

mated digital speech signal processing by computers [29,

86, 92, 105, 109]. Speech can be considered as an indirect

biosignal that is very well suited to unveil the emotional

state of a person. Non-speech utterances have also been

shown to be of interest for emotion-aware computing [78];

however, they are relatively unexplored. The audio

recordings used for speech processing suffer from various

types of noise. Therefore, speech-based emotion recogni-

tion is most often conducted in well-controlled (laboratory)

environments. However, advances in source localization

and, subsequent, noise cancelation are promising. Hence,

we anticipate the feasibility of speech-based emotion-

aware computing in the near future.

Signals from the first group (i.e., biosignals) are rarely

combined with signals from the other two groups (i.e.,

computer vision and speech). In contrast, biosignals them-

selves are frequently combined (e.g., [43, 80, 98]). Also,

signals from the speech processing and computer vision

groups are frequently combined [22, 76, 109]. However,

some exceptions exist. Bailenson et al. [5] combined com-

puter vision and physiological measures. Van Drunen et al.

[100] combined physiological measures with eye tracking,

thinking aloud, and user–system interactions (cf. [99]).

The current study combines speech and biosignals for

emotion recognition. To the author’s knowledge, only two

groups have reported on this combination: Kim et al. [41,

42, 44, 45] and the current author and colleagues [97]. A

possible explanation is the lack of knowledge of the

application of this combination of measures. We expected

to extract features from both the speech and the ECG signal

of people’s experienced valence and arousal, as well as on

their basic emotions. Let us now briefly introduce both of

these signals.

The human speech signal can be characterized by vari-

ous features and their accompanying parameters. However,

no consensus has thus far been reached on the features and

parameters of speech that reflect the emotional state of the

speaker. Most evidence exists for the variability (e.g.,

standard deviation; SD) of the fundamental frequency (F0),

the intensity of air pressure (I ), and the energy of speech

(E) [29, 86, 92, 105, 109]. Therefore, we have selected

these speech features in the current research.

The electrocardiogram (ECG) is an autonomic signal

that cannot be controlled easily, as is the case with elec-

trodermal activity [15]. ECG can be measured directly

from the chest. Where Blood Volume Pulse (BVP) can

already be recorded rather unobtrusively for some time, it

would seem that it will also be possible soon for ECG [58,

77]. Previous research identified various features of ECG

as indicators for both experienced valence and arousal [3,

15, 18, 71]. However, most evidence is provided for the

HR variability (HRV) [40]. HRV decreases with an

increase in mental effort, stress, and frustration [15, 100].

Moreover, HRV can be influenced by the valence of an

event, object, or action [3, 71, 81]. On the whole, HRV ,as

can be derived from ECG, is a rich source of information

and has been shown to be a powerful discriminator

between emotions [40]; therefore, HRV was selected as the

ECG’s feature.

4 Method

4.1 Participants

40 volunteers (20 men, 20 women [49]; average age 27.8;

SD 7.6; range 18–49) participated. None of them had

hearing impairments or any known cardiovascular prob-

lems. All had (corrected to) normal vision. The participants

were ignorant of our research goals.

The participants were divided into two groups of 20 each.

One group of participants was assigned to an office envi-

ronment, in which they took place in an office chair. The

other group of participants was assigned to a living-room

environment, in which they sat on a couch. At both locations,

the room was silent and darkened, and a screen was placed in

front of the participant. Although both environments were

controlled, this enabled an operationalization of the concept

context (or environment) and, hence, its influence on ubiq-

uitous emotion-aware computing.

After instructions, the participant signed an informed

consent, and the ECG measurement belt and headset were

positioned. Next, the participant read aloud a non-emo-

tional story to (a) verify by asking whether or not the

participant had understood the instructions, (b) to test the

equipment, and (c) to determine their personal baseline for

both the speech and the ECG signal.

Using a questionnaire, we recorded general demo-

graphic information of the participants: age [55, 63, 93],

level of education, and nationality [87]. This information

was used to control for them as possible sources of influ-

ence [99]. Next, the participants were also asked to fill in a

revised, short scale of the Eysenck Personality Question-

naire (EPQ-RSS) [30]. Two binary indices were derived
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from the EPQ-RSS. These indicate the participants’ per-

sonality traits neuroticism and extroversion, which are both

known to influence the emotions experienced [21, 62, 65,

97].

4.2 International Affective Picture System (IAPS)

To elicit an emotional response, the participants looked at

30 pictures from the IAPS [52]; see Table 1 for their

identification numbers. The IAPS set is based on a

dimensional model of emotion [18, 52, 66]; however, as

has been shown, this set also has great potential to reflect

multiple emotion categories [97, 66]. Moreover, this set of

pictures has been thoroughly and repeatedly validated [52,

66] and, as such, serves as a sort of ground truth for

emotion research. The pictures were randomly presented

on a 15.4 inch TFT screen (1280 9 800 pixels, 60 Hz

refresh rate; video card: ATI Mobility Radeon 9700).

Each of the 30 IAPS pictures (see Table 1) were shown

for a duration of 20 s, which is more than sufficient for

emotion assessment [96]. After the presentation of each

picture, the participants had 30 s to describe it, followed by

a resting period of 20 s. During these 50 s, a gray screen

was shown. The experiment started and finished by dis-

playing a gray screen during 50 s.

4.3 Digital Rating System (DRS)

After all 30 IAPS pictures were presented and the partici-

pants had described them, the participants had been asked

to judge the IAPS pictures using a DRS. The DRS dis-

played the IAPS pictures to aid the participant’s memory,

together with 11 point (range: 0–10) Likert scales using

radio buttons; see Fig. 1. The complete set of all 30 IAPS

pictures was presented three times in separate blocks.

Within the three blocks, the IAPS pictures were presented

in random order. To each block, one of the three Likert

scales (i.e., positive affect, negative affect, and arousal [96,

14]; see Sect. 2) was assigned in semi-random order; that

is, the second block presented the arousal scale, the first and

third block presented the negative and positive valence scales

in balanced order. Consequently, the possible bias in judging

the IAPS pictures was limited. The DRS’ Likert scales were

augmented with the Self-Assessment Mannequin (SAM) [13],

of which three pictures were shown; see Fig. 1. This provided

an intuitive and validated subjective assessment of the emo-

tions the participants’ had experienced.

The three scales used allowed us to construct the VA

model; see also Sect. 2 In addition, it enabled us to assign

the images to the six basic emotions [18, 66], see also

Table 1. For each picture, the average rating on each of the

three scales over all participants was calculated. This

enabled a classification of the pictures into two categories

(i.e., high and low) for each of the three scales: positive,

negative, and arousal. From these classifications, two cat-

egories for arousal were identified: high arousal and low

arousal. In addition, three categories for valence were

identified: positive, negative and neutral, where the cate-

gory neutral denotes neither positive nor negative valence.

Table 1 The 30 IAPS pictures [52] with the average ratings given by

the participants on the positive valence, negative valence, and arousal

Likert scales

IAPS identifiers Basic emotions VA model

Valence Arousal

4624, 4625, 7450, 8033, 8220 Joy Positive High

2120, 3015, 6022, 6230, 6312 Anger Negative High

5000, 5020, 5030, 5800, 7900 Relaxed Positive Low

2141, 2205, 2375, 9220, 9435 Sadness Negative Low

2704, 5920, 7640, 8160, 8232 Neutral 1 Neutral High

2214, 7000, 7041, 7484, 9070 Neutral 2 Neutral Low

From the positive and negative valence ratings, three valence cate-

gories were derived: neutral, positive, and negative. Using the scores

on arousal, two arousal categories were determined: low and high.

Consequently, we were able to assess a discrete representation of the

valence–arousal (VA) that distinguished six compounds

Fig. 1 A screendump of the Digital Rating System (DRS) used in

this research; see Sect. 4. An IAPS picture (category: relaxed) is

shown [52]. Below the 11 point (0–10) Likert scale with radio buttons

is shown augmented with three Self-Assessment Mannequin (SAM)

images. With these images, the experienced arousal was assessed as

indicated by both the SAM images and the text ‘‘Calm versus Excited

scale’’
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Table 1 provides a specification of the emotion categories

and the IAPS images assigned to them.

5 Signal processing

This section describes how all of the data were recorded

and, subsequently, processed. Speech utterances were

recorded continuously by means of a standard Trust mul-

tifunction headset with microphone. The recording was

performed in SoundForge 4.5.278 (sample rate 44.100 Hz;

sample size 16 bit). Parallel with the speech recording, a

continuous recording of the ECG was done through a

modified Polar ECG measurement belt. The Polar ECG belt

was connected to a data acquisition tool (NI USB-6008). Its

output was recorded in a LabVIEW 7.1 program, with a

sample rate of 200 Hz.

5.1 Signal selection

The speech signal of three participants was not recorded

due to technical problems. For one other participant, the

speech signal was too noisy. These four participants were

excluded from further analysis. With four other partici-

pants, either a significant amount of noise was present in

their ECG or the signal was even completely absent. These

participants were omitted from further processing.

Since one of the main aims was to unveil any possible

added value of speech and ECG features to each other, all

data were omitted from analysis of the eight participants

whose ECG or speech signals were not recorded appro-

priately. This resulted in a total of 32 participants (i.e., 16

men and 16 women), whose signals were processed.

Regrettably and surprisingly, the eight participants whose

data was not processed, all participated in the office-like

environment. So, 20 participants participated in this

research in a home-like environment and 12 of participants

sat down in an office-like environment. Conveniently, of

these 32 participants, men and women were equally present

in both environments.

5.2 Speech signal

For each participant, approximately 25 minutes of sound

was recorded during the study. However, since only parts

in which they spoke are of interest, the parts in which the

participants did not speak were omitted from further

processing.

Some preprocessing of the speech signal was required

before the features could actually be extracted from the signal.

We started with the segmentation of the recorded speech

signal in such a way that the speech signal was determined

separately for each picture. Next, the abnormalities in the

speech signals were removed. This resolved all technical

inconveniences, such as: recorded breathing, tapping on the

table, coughing, cleaning the throat, and yawning. This

resulted in a ‘‘clean’’ signal.

After the selection of the appropriate speech signal

segments and their normalization, the feature extraction

was conducted. Several parameters derived from speech

have been investigated in a variety of settings with respect

to their use in the determination of people’s emotional

state. Although no general consensus exists concerning the

parameters to be used, much evidence exists for the SD of

the fundamental frequency of pitch (F0) (SD F0), the

intensity of air pressure (I ), and the energy of speech (E)

[29, 86, 92, 105, 109]. We will limit the set of features to

these, as an extensive comparison of speech features falls

beyond the scope of this study.

For a domain [0, T], the energy ðEÞ is defined as:

1

T

ZT

0

x2ðtÞ dt; ð1Þ

where x(t) is the amplitude or sound pressure of the signal

in Pa (Pascal) [10]. Its discrete equivalent is:

1

N

XN�1

i¼0

x2ðtiÞ; ð2Þ

where N is the number of samples.

For a domain [0, T], intensity ðIÞ is defined as:

10 log10

1

T P2
0

ZT

0

x2ðtÞ dt; ð3Þ

where P0 = 2 9 10-5 Pa is the auditory threshold [10]. I
is computed over the discrete signal in the following

manner:

10 log10

1

N P2
0

XN�1

i¼0

x2ðtiÞ: ð4Þ

It is expressed in dB (decibels) relative to P0.

Both the I and the E are directly calculated over the

clean speech signal. To determine the F0 from the clean

speech signal, a fast Fourier transform has to be applied

over the signal. Subsequently, its SD is calculated; see

also (5). For a more detailed description of the processing

scheme, we refer to [9].

5.3 Heart rate variability (HRV) extraction

From the ECG signal, a large number of features can be

derived that are said to relate to the emotional state of people

[3, 39, 40, 95, 97]. This research did, however, not aim to

provide an extensive comparison of ECG features. Instead,
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the use of the combination of the ECG signal with the speech

signal was explored. Therefore, one well-known distinctive

feature of the ECG was chosen: the variance of heart rate.

The output of the ECG measurement belt has a constant

(baseline) value during the pause between two heart beats.

Each new heart beat is characterized by a typical slope

consisting of four elements, called: P, Q, R, and S. A heart

beat is said to be characterized by an R-wave, which is an

upward deflection. The HR is calculated from the intervals

between these R-waves (R–R intervals) [3, 39, 95, 97]. The

measurement belt for the ECG signal appeared to be sensi-

tive to movements of the participant. This resulted in four

types of noise that can be distinguished: a heart beat that

differs from the normal PQRS shape, heart beats that succeed

too quickly, missing heart beats in a sequence, and no HR

signal at all. The ECG signal was checked automatically for

all these types of noise and corrected where necessary.

The ECG signal was segmented into separate signals per

stimulus, before it was processed. Next, the intervals

between the R-waves (R–R intervals) of the ECG signal

were determined. Subsequently, the mean R–R interval

was determined. To determine the variability of the heart

rate (HRV) from an ECG, the R–R intervals of the ECG

were determined. Subsequently, two methods were applied

for the calculation of the HRV, namely: the variance (r2):

1

R
XR�1

i¼0

ðDi � �DÞ2 ð5Þ

and the mean absolute deviation (MAD):

1

R
XR�1

i¼0

Di � �D ð6Þ

of the R–R intervals Di:�D denotes the average R–R inter-

val, andR denotes the number of R–R intervals. The SD of

the R–R intervals is defined as the square root of (5): r.

Note that the r2 as defined in (5) is identical to the total

spectral power. This also explains why comparisons

between frequency and time–domain measures have often

shown that for every band of an HR power spectrum, there

is at least one time–domain correlate [63]. Further, please

note that various other measures were applied for the

determination of the HRV [3, 39, 40, 63, 95, 97]. However,

with these three measures, we expected to have a good

indication of the use of HRV for emotion detection.

5.4 Normalization

To tackle intrapersonal differences in the speech signal

x(t), the feature series f(t) calculated from this signal had to

be normalized. All feature series calculated were normal-

ized by subtracting people’s personal baseline l from the

original feature series f(t) [59]:

~f ðtÞ ¼ f ðtÞ � l; ð7Þ

where ~f ðtÞ denotes the normalized feature series.

The personal baseline l was obtained at the start of the

study, directly after the instructions; see also Sect. 4. This

normalization is a standard correction that is often used in

psychophysiological studies and has repeatedly been

shown to work [15]. The resulting data are often denoted as

delta or reaction score. These scores are known to be both

suitable and reliable for absolute level comparisons.

The ECG signal was processed without normalization. A

normalization of the features derived from the ECG signal

is already included in the calculation of the HRV (cf. 5 and

6 with 7). Note that for many of the other features extracted

from an ECG signal, normalization is required.

6 Results

This section discusses the results obtained in this study.

First, the considerations taken in the analysis will be pre-

sented. Next, in line with the main aims of this study, we

will analyze the combined discriminative power of both the

combination of features (i.e., repeated measures multivar-

iate analysis of variance (MANOVA) (Wilks’ lambda)) and

the features separately (i.e., (univariate) repeated measures

analysis of variance (ANOVA) (Huynh-Feldt)). This is

done for two series of analysis, one to assess the dimen-

sional VA model and one to assess six discrete basic

emotions. The factors included in the analyses are as fol-

lows: environment, the personality traits neuroticism and

extroversion, and gender; see also Table 2.

6.1 Considerations with the analysis

Preliminary analysis of the ECG signal showed that the SD,

the variance, and MAD of the heart rate (see 5, 6) provided

similar results. This is in line with what is reported in the

literature [46, 63]. Since the preliminary analysis did not

reveal significant differences among the three measures for

HRV and this is supported by the literature, we have

Table 2 Legend of the factors included in the analyses presented in

Sect. 6, particular in Tables 3, 4, 5, and 6

Abbreviation Explanation

V Valence

A Arousal

E Environment (or context)

PN Personality trait neuroticism

PE Personality trait extroversion

G Gender
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chosen the most common one: the SD of the R–R intervals.

Therefore, in the main analysis, variance and MAD of the

R–R intervals as measures for HRV were excluded; see

also Fig. 2. From this point on, the SD of the R–R intervals

will simply be denoted as HRV.

The following factors were also included in the analysis:

the environment (i.e., office versus living room), gender,

and the two personality traits extroversion and neuroticism.

Preliminary analysis showed that the other recorded

demographical information (see Sect. 4) did not influence

the emotional responses of the participants. Hence, this

information was excluded from further analyses (cf.

Fig. 2).

To tackle the problem of finding spurious relationships

that can arise when conducting multiple tests separately,

first multivariate analysis was conducted and, subse-

quently, univariate analysis. Note that only if multivariate

analysis had revealed effects was univariate analysis to be

conducted to further unravel this effect. Alternatively, this

problem could have been tackled by a (modified) Bonfer-

roni adjustment, which ensures the probability of type I

errors B.050 [74]. However, this has the drawback that

there is no consensus on the modification of Bonferroni.

All tests will be reported with their degrees of freedom,

power, and level of significance. If the level of significance

is close to zero, this will be denoted with p\ .001, instead

of providing an exact statistic. As measure of effect size

partial eta square (g2) will be reported to indicate the

proportion of variance accounted for (i.e., a generalization

of r/r2 and R/R2 in correlation/regression analysis) [108].

The threshold for reporting results is sharp (i.e., p B .010)

and, hence, ensures reliable results. Where interactions

appeared that exceed the order four, they have been

ignored, as they are nearly impossible to interpret. Other-

wise, all interaction effects will be reported.

6.2 The (dimensional) valence–arousal (VA) model

In Table 3, the results of a repeated measures MANOVA

are presented that mapped the four features derived from

the speech and ECG model onto the dimensional VA

model. Results on both the integral VA model and its two

ECG

speech
signal

HR

F0

variance

SD

MAD

SD

intensity

energy

A
N
O
V
A

environment
[home / office]

valence-arousal
model

baseline substraction &
 

feature selection

rem
oval of recording errors &

noise reduction
gender

6 emotion 
classes

30 IAPS pictures

personality traits

neuroticism

extroversion

Fig. 2 The processing scheme

of unveiling affective

dimensions. It shows how the

physiological signals (i.e.,

speech and the ECG), the

emotions as denoted by people,

personality traits, people’s

gender, and the environment are

all combined in repeated

measures ANOVAs. ECG
electrocardiogram, HR heart

rate, F0 fundamental frequency

of pitch, SD standard deviation,

MAD mean absolute deviation,

and ANOVA analysis of

variance

Table 3 Results of the repeated

measures MANOVA on the

valence–arousal (VA) model

and its distinct dimensions. The

threshold for reporting results

was p B .010

V A E PN PE G Specification of effect

•F F(8,74) = 67.835, p \ .001, g2 = .880

• • F(8,74) = 3.752, p = .001, g2 = .289

• • F(8,74) = 4.426, p \ .001, g2 = .315

• • • F(8,74) = 2.774, p = .010, g2 = .231

• • • F(8,74) = 3.419, p = .002, g2 = .270

• F(4,17) = 653.941, p \ .001, g2 = .994

• • F(4,17) = 9.325, p \ .001, g2 = .687

• • F(8,74) = 82.962, p \ .001, g2 = .900

• • • F(8,74) = 4.431, p \ .001, g2 = .324

• • • F(8,74) = 4.168, p \ .001, g2 = .311

• • • F(8,74) = 2.895, p = .007, g2 = .238
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dimensions are presented. Table 3 denotes that with the

MANOVA, 90% of the variance of the VA model can be

explained. The results on the distinct dimensions confirm

this result with, respectively, 88 and 99% explained vari-

ance for the valence and arousal dimensions.

When the factors environment, the personality traits

neuroticism and extroversion, and gender were included in

the analysis, good results were obtained as well. However,

the power of the MANOVAs and the explained variance

were much lower than when these factors were ignored; see

Table 3. Taken together, these results confirm the effi-

ciency of the small set of features as compiled for this

research and suggest that brute force processing and

extraction of large numbers of features (e.g., [1,000 [86,

107]) are not required for emotion-aware computing.

To unravel the influence of each of the four features, a

repeated measures ANOVA was executed for each of them.

The results of these analyses are presented in Table 4.

These analyses provide a much more subtle image of the

features included in the MANOVA. We will now first

discuss the results on the three speech features (i.e., SD F0,

intensity I ; and energy E) and, subsequently, the ECG

feature HRV.

SD F0 by itself had little predictive power, and even

with one additional factor included, no strong results were

found. When both environment and the personality trait

neuroticism were taken into account, an effect was found

for the VA model; see Table 4. This effect can be mainly

attributed to the dimension valence, for which SD F0 was

sensitive, when two factors were included; see Table 4. For

the dimension arousal, with two levels to distinguish, no

effect was found.

I showed to have an excellent predictive power and was

able to explain almost all variance with 98% for the VA

model and both of its dimensions; Table 4. Also strong

effects were found on the VA model and its dimension

when the environment and the personality trait were taken

into account. However, these effects are not even close to

the magnitude of the effects found when these factors were

not taken into account. So, the environment, personality

traits, and gender seem to have little influence, if any, on

the intensity of speech as indicator for valence and arousal.

The feature E proved to be a good indicator for the

dimension arousal of the VA model; see Table 4. Analysis

showed that additional factors were of little influence on

this effect. In addition, an effect was found on the VA

model when both the environment and gender were taken

into account; however, this was only marginally below the

threshold of reporting. So, E seems to be a good and robust

indicator for experienced valence.

The ECG feature HRV is frequently used as an indicator

for emotions. In the perspective of the VA model, it has

Table 4 Results on the

repeated measures ANOVAs on

the valence–arousal (VA) model

and its distinct dimensions

The threshold for reporting

results was p B .010

V A E PN PE G Specification of effect

SD F0

• • • F(2,40) = 6.136, p = .009, g2 = .235

• • • F(2,40) = 6.327, p = .008, g2 = .240

• • • F(2,40) = 8.135, p = .010, g2 = .289

• • • • F(2,40) = 5.924, p = .010, g2 = .229

Intensity

• F(2,40) = 817.149, p \ .001, g2 = .976

• • F(2,40) = 13.677, p \ .001, g2 = .406

• F(1,20) = 1095.287, p \ .001, g2 = .982

• • F(2,40) = 1060.802, p \ .001, g2 = .981

• • • F(2,40) = 52.611, p \ .001, g2 = .341

• • • F(2,40) = 63.491, p \ .001, g2 = .384

Energy

• F(1,20) = 24.123, p \ .001, g2 = .547

• • • • F(2,40) = 5.254, p = .009, g2 = .208

HRV

• • • F(2,40) = 6.872, p = .005, g2 = .256

• • • F(2,40) = 9.463, p = .001, g2 = .321

• • • F(2,40) = 6.354, p = .007, g2 = .241

• • • F(1,20) = 8.493, p = .009, g2 = .298

• • • F(1,20) = 8.772, p = .008, g2 = .305

• • • • F(2,40) = 7.426, p = .004, g2 = .271

• • • • F(2,40) = 9.736, p = .001, g2 = .327
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been reported to indicate both the experienced valence and

the experienced arousal. These results are confirmed by the

current study; see Table 4. However, for the VA model, as

well as for its distinct dimensions, the factors environment,

the personality trait neuroticism, and gender proved to be

of influence. In contrast with the speech features, the power

of HRV as indicator for the VA model was only unveiled

when these factors were included in the ANOVA; see

Table 4.

6.3 The six basic emotions

In Table 5, the results of a repeated measures MANOVA

are presented that mapped the four features derived from

the speech and ECG model onto the six basic emotions.

The MANOVA showed an effect of the four features on the

six basic emotions, with and without other factors included.

The effect of the factors environment, the personality trait

neuroticism, and gender were limited. The personality trait

extroversion was of no influence at all.

To gain understanding in the influence of the four fea-

tures, repeated measures ANOVAs were executed for each

of them. The results of these analyses are presented in

Table 6. First, we will discuss the results of the three

speech features (i.e., SD F0, intensity I ; and energy E).

Second, the results of the ECG feature HRV will be dis-

cussed. In none of the analyses did the personality trait

extroversion show any influence; therefore, this factor will

not be mentioned further on.

SD F0 by itself showed to have little predictive power;

see Table 6. Only when either environment and the per-

sonality trait neuroticism or environment and gender were

taken into account was an effect found. I showed to have

no predictive power at all, neither by itself nor in combi-

nation with other factors. E showed to have a good pre-

dictive power by itself. The four factors included in the

analysis were of no influence on E; see Table 6.

Of all four features, HRV showed to have the highest

predictive power. However, this was only the case when

two out of the three factors included were taken into

account. In each of these three cases, roughly 30% of the

variance in the data could be explained.

6.4 The valence–arousal (VA) model versus basic

emotions

When both emotion representations are compared, the

following ten main conclusions can be drawn:

• Both emotion representations can handle the variation

in participants, even without including additional

information such as the environment, personality traits,

and gender; see Tables 3, 4, 5, and 6.

• Using the VA model, a very high amount of variance

can be explained: 90%. This is much higher than with

the basic emotions: 18% (cf. Tables 3 and 5).

• With the VA model compared to the basic emotions as

representation for emotions, a multiple of the effect was

found (cf. Tables 3, 5 and 4, 6).

• The SD F0 showed to have a good predictive power

with both emotion representations; see Tables 4 and 6.

• The intensity of speech (I ) is by far the most

informative feature for the VA model; see Table 4. In

contrast, with the basic emotions, it has no predictive

power at all; see Table 6.

• The energy of speech (E) was a very good predictive

power for arousal and a good predictive power for the

six basic emotions; see Tables 4 and 6.

• The ECG feature HRV showed to be heavily influenced

by multiple factors that were included in the analysis.

However, when these are taken into account, HRV can

serve as a rich source of information; see Tables 4

and 6.

• The personality trait extroversion had no significant

influence on the participants’ experience of emotions;

see Tables 3, 4, 5 and 6.

Table 5 Results on the repeated measures MANOVA on the six

basic emotions

E PN PE G Specification of effect

F(20,400) = 4.330, p \ .001, g2 = .179

• F(20,400) = 2.332, p = .001, g2 = .106

• F(20,400) = 4.777, p \ .001, g2 = .194

• • F(20,400) = 4.710, p \ .001, g2 = .191

• • F(20,400) = 4.869, p \ .001, g2 = .196

• • F(20,400) = 3.951, p \ .001, g2 = .166

The threshold for reporting results was p B .010

Table 6 Results on the repeated measures ANOVAs on the six basic

emotions

E PN PE G Specification of effect

SD F0

• • F(5,100) = 6.292, p = .006, g2 = .239

• • F(5,100) = 6.441, p = .005, g2 = .244

Energy

F(5,100) = 6.352, p \ .001, g2 = .241

HRV

• • F(5,100) = 7.078, p = .004, g2 = .261

• • F(5,100) = 9.355, p = .001, g2 = .319

• • F(5,100) = 6.601, p = .006, g2 = .248

The threshold for reporting results was p B .010. For Intensity, no

results are reported as none of them exceeded the threshold
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• Gender has some influence, although limited; see

Tables 4 and 6. For the speech signal, this could be

partly explained by the normalization of the signal.

• Although approached from another angle, both emotion

representations as treated in this article share many

characteristics. This is mainly because a discrete

representation of the VA model was used that can

distinguish six compounds, similar to the six basic

emotions.

As is illustrated by the current study, the representation

of emotions remains a topic of debate; see also Sects. 2 and

3. In practice, both discrete basic emotions and dimen-

sional models are applied [18, 27, 33, 66]. This study

compared these two representations. Data of the current

study suggest that the VA model is most appropriate, as the

explained variance is much higher than with the basic

emotions: 90% versus 18%. As Eerola and Vuoskoski [27]

state, the resolution of the discrete and categorical models

is poorer. Moreover, current results suggest that there is no

such thing as a basic emotion (cf. [33]). The discrepancy in

explained variance of the present analyses (see Tables 3, 4,

5, 6) can be attributed to the variance of the stimuli within

one category of one basic emotion.

With both models of emotion, many interaction effects

have been reported in the accompanying sections, in par-

ticular in relation to HRV. However, even twice as many

effects would have been reported if a less sharp, more loose

threshold for reporting results had been taken; for example,

p B .050. More than anything else, this illustrates the

complexity of people and their emotional state. Moreover,

more than a choice for one of both emotion models, the

current data suggest that a holistic model would be most

appropriate. This also explains the variation in results

reported in the literature, in particular in research that goes

from laboratory to life [99]. Despite its drawbacks, studies

that aim to bridge this gap and take into account multiple

factors should be encouraged. With the current study, such

an attempt has been made; however, as the data illustrate,

many more are needed.

7 Discussion

This section will discuss the results presented in the pre-

vious section further and relate them to the current state-of-

the-art research. As was described in the introduction (Sect.

1), this research features five key issues, namely: (1) hybrid

(i.e., speech ? biosignals) affective computing, (2) mod-

eling emotion, (3) including environment (or context), (4)

taking people’s personality into account, and (5) unveiling

the possible importance of demographic information. Each

of the these key issues will be discussed in this section.

Next, a brief general discussion will be provided. We will

end this article with some conclusions.

7.1 The five issues under investigation

Nowadays, not only speech and computer vision but also

biosignals such as ECG can be applied completely unob-

trusively [2, 23, 37, 58, 64, 75, 77, 106, 110]. Speech and

biosignals are par excellence suitable for personalized and

ubiquitous emotion-aware computing technology. How-

ever, surprisingly, this combination has hardly been

explored; except for the author’s own work [97], the only

work the author is acquainted with that applied this com-

bination is that of Kim et al. [41, 42, 44, 45]. Processing

both signals in parallel can, however, be done conve-

niently, as is illustrated by this study; see also Fig. 2,

and provides a potentially rich source of complementary

information. This was confirmed by the analyses presented

in the previous section; see also Tables 3, 4, 5 and 6. True

bimodal (or hybrid) including biosignals and either speech

or vision-based techniques should be explored more often,

despite the various methodological and technical hurdles

that need to be taken for its execution. Moreover, without

any doubt, trimodal (i.e., biosignals, speech, and vision-

based) affective computing would also be fruitful.

To ensure the correct assessment of the experienced

emotions of people, the IAPS set was used in the current

research [18, 52, 66]. Throughout the years, IAPS has

become a ground truth for emotion research, as it is

repeatedly well validated. Since the representation of

emotions is still a topic of debate, both the dimensional VA

model and the categorical basic emotions were employed,

using the same set of IAPS pictures [52, 66]. This enabled a

one-on-one comparison between both emotion representa-

tions [18, 27, 33, 66, 84]. Although the various represen-

tations of emotions are frequently discussed, it is rare that

two (or more) models are mapped upon affective signals

(cf. [97]). However, par excellence, the setup of the current

research facilitated this. The results, as discussed in the

previous section, support both models. However, more

convincing effects have been found for the dimensional

VA model. Although further studies should be conducted

on the mapping of affective computing techniques upon

models of emotion, the results of the current study provide

a clear indication.

That context plays its role in human functioning (e.g.,

information processing) is generally accepted. However,

how to operationalize such an abstract concept? Moreover,

is context not different for us all (e.g., because it depends

on our memories)? To enable a feasible operationalization

of the concept context, it was brought down to the concept

environment. The same study was conducted in two envi-

ronments. Half of the participants participated in a living-
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room setting and half of them participated in an office

setting. This enabled a comparison between both settings.

Both repeated measures MANOVAs (see Tables 3, 5)

showed a (very) sharp decline in power and explained

variance when environment was taken into account as a

factor. This implies that including environment as a factor

introduces noise instead of an additional source of infor-

mation that can explain the variance in the data. However,

the (univariate) ANOVAs, with both emotion representa-

tions (a separate one for each of the four features), provide

another point of view. With these analyses, environment

did help to unveil emotions. This suggests that the com-

bination of features chosen for this study can handle the

influence of the environment (or context) excellently. This

stresses the complementary characteristics of the features

chosen, as was already claimed earlier on in this article. In

parallel, it identifies the influence environments do have on

physiological responses to emotions. Follow-up research

should explore this intriguing finding further.

The personality traits neuroticism and extroversion, both

known to influence the experience of emotions [21, 62, 65,

67, 97], were assessed to determine their relation to the

affective state of the participants. Independent of the

emotion representation chosen, the personality trait extro-

version has shown to be of hardly any influence. This is in

line with an earlier study by the author [97], but deviates

from other literature [21, 62, 65]. In contrast, the person-

ality trait neuroticism has shown to be of influence, with

both emotion representations. However, its influence

depended heavily on the emotion representation chosen.

With the dimensional VA model, the repeated measures

MANOVA (see Table 3) showed a (very) sharp decline in

power and explained variance when environment was

taken into account as a factor. As with the environment,

this implies that including the personality trait neuroticism

as a factor introduces noise instead of an additional source

of information that can explain the variance in the data. In

contrast, with the six basic emotions, the repeated measures

MANOVA (see Table 5) showed a small increase in both

power and explained variance when environment was

taken into account as a factor. The (univariate) ANOVAs,

of both representations (see Tables 4, 6) reveal that the

personality trait neuroticism is of influence on the distinct

features, however, only in combination with either the

environment, gender, or both. So, personality traits seem to

play their role in our emotional experiences and their

reflection in our speech and ECG; however, it is a complex

interplay of factors, which may be expected to be chal-

lenging to unveil.

Various demographic information were gathered on the

participants, namely: level of education, age, nationality,

and gender. The possible effect of these factors was

assessed with preliminary analyses. These analyses have

not been reported for reasons of brevity. The preliminary

analysis showed the absence of an effect due to the level of

education; hence, this factor was excluded from further

analysis. However, this lack of effect can be explained by

the small variance in level of education between the par-

ticipants. Age influenced neither the reported emotions nor

the physiological signals accompanying them. This is in

contrast with some of the literature that states that age is of

importance [49]. This is even specifically shown for car-

diovascular reactivity on psychological stress [55, 93]. This

lack of effect can be explained by the skewed distribution,

as well as by the limited variance of the age of the par-

ticipants; see also Sect. 4. The nationality of the partici-

pants was heavily skewed towards Dutch: 26 of the 32

participants on which the analyses were conducted did

have a Dutch nationality. Therefore, the choice was made

to divide the participants having a Dutch and non-Dutch

nationality. However, this analysis did not reveal any effect

on this factor. Nationality was included as a representation

of both cultural and ethnical factors. Both these factors

have been reported to be of influence on physiological

responses in relation to emotions [87]. More than anything

else, it should be concluded that this research was not

optimized for the assessment of this factor, which explains

the absence of any effect. The gender of the 40 participants

was perfectly balanced; so, in contrast with level of edu-

cation and age, for this factor, a maximal variance was

obtained. In line with the literature, gender was shown to

be of effect [54, 93]. However, this effect was marginal,

and additional research is needed to unveil the exact

influence of gender on the relation between biosignals and

speech and emotions.

7.2 Conclusion

The results of this study show that the three speech mea-

sures (i.e., SD F0, I and E) in combination with only HRV

already provide a reliable, robust, and unobtrusive method

to reflect user’s affective state. Of course, many more

features could be derived from both the speech signal [29,

86, 92, 105, 109] and the ECG [3, 15, 18, 71, 81]. How-

ever, this was not the aim of this study and also appeared to

be unnecessary. The current results are already excellent

with 90% explained variance for the VA model (see Sect.

6), which also challenges the claim that personalized pro-

cessing of such signals is required.

The debate on how to define emotions remains intrigu-

ing, as it is so close to our everyday lives. However, for

personal and ubiquitous computing technology, practical

considerations should also be taken into account. The

processing scheme introduced in this study enables the

unobtrusive assessment of affect. In practice, this can be

achieved through either sensor networks or wearable
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sensors; for example, as embedded in electronic textiles

[106, 110]. Both of these branches of engineering have

flourished since the start of the current century. One can

only conclude that this technology is rapidly maturing [2,

23, 64, 75] and, consequently, is applied in a variety of

domains; for example, health monitoring [1, 23, 37, 64, 75,

106, 110]. While the underlying technology is becoming

both more miniaturized and more robust [37, 64, 75],

various probes have been introduced. Generic, ambulatory,

wearable ECG systems [58, 77], empathic chairs [4], and

digital plasters [106] have been introduced. It seems that

sensor networks’ and wearable sensors’ main drawbacks is

that of many wireless applications, such as your laptop:

battery life [1, 37, 64, 106, 110].

All in all, ubiquitous computing, following AI, has to

embrace emotion as an essential element in pursuing its

next level of development. It is surprising that the combi-

nation of speech and biosignals has hardly been used

before to unveil people’s emotions. Par excellence, this

combination of signals has been shown to be suitable for

unobtrusive emotion recognition. This having been said,

the current study provides a significant leap forward in

bringing personal ubiquitous emotion-aware computing to

practice.
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