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Ubiquitous decision support systems require more intelligent mechanism in which more timely and
accurate decision support is available. However, conventional context-aware systems, which have been
popular in the ubiquitous decision support systems field, cannot provide such agile and proactive deci-
sion support. To fill this research void, this paper proposes a new concept of context prediction mecha-
nism by which the ubiquitous decision support devices are able to predict users’ future contexts in
advance, and provide more timely and proactive decision support that users would be satisfied much
more. Especially, location prediction is useful because ubiquitous decision support systems could dynam-
ically adapt their decision support contents for a user based on a user’s future location. In this sense, as an
alternative for the inference engine mechanism to be used in the ubiquitous decision support systems
capable of context-prediction, we propose an inductive approach to recognizing a user’s location by
learning a dynamic Bayesian network model. The dynamic Bayesian network model has been evaluated
with a set of contextual data from undergraduate students. The evaluation result suggests that a dynamic
Bayesian network model offers significant predictive power in the location prediction. Besides, we found
that the dynamic Bayesian network model has a great potential for the future types of ubiquitous deci-
sion support systems.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

As the ubiquity becomes perceived by users more easily in their
daily lives, context-aware systems have received a lot of attention
from both practitioners and researchers. World-wild excitement
about smart phones is also representing people’s passion about
the context-aware devices. In this respect, context-awareness has
been the subject of the growing attention in the area of ubiquitous
computing over the years due to its usefulness for several applica-
tion domains (Hong, Suh, & Kim, 2008). When computer systems
are aware of the context in which they are used and are able to
adapt to changes in context, they can engage in more efficient
interaction with users.

Context awareness is concerned with enabling ubiquitous com-
puting devices to be aware of changes in the environment, and to
intelligently adapt themselves to provide more meaningful and
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timely decision support for decision-makers (Feng, Teng, & Tan,
2009). However, context-aware systems are limited by the fact
that their target is the current context, and that the future context
is not predicted by context-aware systems. Therefore, the quality
of services provided by the context-aware systems is seriously
restricted when future contexts change drastically. To this end,
we need to consider the task of context prediction in order to
proactively offer high-quality services for users in ubiquitous com-
puting environments.

Context prediction opens a wide variety of possibilities of con-
text-aware computing applications. A context-prediction applica-
tion may infer the future location of an office owner and redirect
incoming calls to the future location. A context-prediction applica-
tion may also be useful for enhancing the quality of transportation
systems. Based on the information about the current location and
the future location of a particular user, transportation systems
equipped with context prediction technology may be able to assist
drivers more effectively by inferring possible preferred routes and
by providing customized route suggestions for drivers, as well as
warning the drivers about possible dangers by predicting their
future context. Knowing the current location and current time,
together with the user’s calendar, could also allow application to
have a good idea of the user’s current social situation, such as if
the user is in a meeting, in class, waiting in the airport, and so on.

http://dx.doi.org/10.1016/j.eswa.2011.10.026
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The list of applications listed here is limited and we believe that
there is a great potential for context prediction to be used in a vari-
ety of ubiquitous computing applications. Especially, it becomes
clear how much users would benefit from the ubiquitous decision
support systems equipped with the context-prediction mecha-
nism. As an alternative for the inference engine to be used in the
ubiquitous decision support systems capable of providing con-
text-prediction function, this paper proposes a dynamic Bayesian
network (DBN) approach to location prediction for ubiquitous
computing environments. DBN is an important technique because
of its ability to represent the temporal properties of user context
information. In fact, it is obvious that a user’s current locations
are influenced by their previous locations, and particular locations
afford particular types of actions. Therefore, we adopted a DBN ap-
proach for recognizing the locations of users.

This paper is structured as follows. Section 2 discusses context
prediction and various context prediction techniques in ubiquitous
computing environments. The modeling techniques used to predict
a user’ locations are described in Section 3. The results of the
experiment are presented and discussed in Section 4, followed by
concluding remarks and directions for future work in Section 5.
2. Background

2.1. Context prediction

Context prediction focuses on inferring users’ context based on
analyzing the observed context history that users have shown so
far. The observed context history is a series of context information
showing how users are moving around in a certain ubiquitous
computing environment. The context information is supplied by
various types of sensors such as GPS, RFID, and a variety of wireless
devices. These sensors may provide the context information about
users’ locations, users’ actions, or the changes in a physical envi-
ronment of the users. The purpose of context prediction is to pre-
dict the subsequent context that users will likely to enter (if the
contexts are locations or situations) or perform (if the contexts
are actions) based on a history of contexts which are compiled
through various sensors. For ubiquitous computing environments,
the ability to accurately predict a user’s contexts would make it
possible to provide context-aware services that are more natural
and customized to people’s needs. Accurately recognizing a user’s
contexts could provide more effective and personalized advices
to a user, particularly in ubiquitous decision support systems.
2.2. Context prediction techniques

Several context prediction techniques have been proposed in
the literature such as Bayesian networks (Hwang & Cho, 2009;
Petzold, Pietzowski, Bagci, Trumler, & Ungerer, 2005), Markov
models (Rashidi, Cook, Holder, & Schmitter-Edecombe, in press;
Singla, Cook, & Schmitter-Edgecombe, 2010), Topic models
(Huýnh, Fritz, & Schiele, 2008; Kim, Helal, & Cook, 2010) and neural
network approaches (Petzold et al., 2005). Examples of context
prediction are location prediction (Anagnostopoulos, Anagnosto-
poulos, Hadjiefthymiades, Kyriakakos, & Kalousis, 2009; Laasonen,
Raento, & Toivonen, 2004; Petzold et al., 2005), movement predic-
tion (Perl, 2004), action prediction (Brdiczka, Reignier, & Crowley,
2007; Davison & Hirsh, 1998; Singla et al., 2010), daily routine pre-
diction (Huýnh et al., 2008; Kim et al., 2010).

Petzold et al. (2005) investigated Bayesian networks, neural
networks, Markov and state predictors to predict the next location
of the office owner in an office building. Their system predicted the
next location of the office owner and switched over the phone call
to the predicted location. Singla et al. (2010) proposed a Hidden
Markov Model approach to recognizing activities performed by
multiple residents in a single smart home environment. Sensor
readings were collected in the smart home environment while par-
ticipants were performing their activities. Hidden Markov Model
was used to determine an activity that most likely corresponds
to an observed sequence of sensor readings. Bayesian networks
can be used to predict prominent activities of users. For example,
Hwang and Cho (2009) proposed a modular Bayesian network
model to infer landmarks of users from mobile log data such as
GPS log, call log, SMS log, picture log, music-playing log and weath-
er log.

A promising topic model approach to recognizing a user’s daily
routines has been proposed for ubiquitous computing environ-
ments. For example, Huýnh et al. (2008) adopted a topic model
to predict a user’s daily routine (such as office work, commuting,
or lunch routine) from users’ activity patterns. To evaluate the to-
pic model, they collected the daily activities of one person over a
period of sixteen days. For data collection, the subject wore two
sensors in order to record low-level signals such as body move-
ments or body posture. The subject was asked to annotate his
activities in detail in order to model the relationship between user
activities and low-level signals. In total, 34 activities were recorded
in their dataset. Huýnh et al. first identified the user’s activity pat-
terns from low-level sensor data by using various classifiers such
as Support Vector Machines, Hidden Markov Models, and a Naïve
Bayesian network. The resulting user activity patterns that were
identified were then given to the topic model as inputs to infer
the user’s daily routine.

As we have seen so far, there are many examples of context pre-
diction in a variety of application domains. Several strategies can
be employed to identify the future location of a user. One such
technique is to adapt probabilistic models which predict a user’s
future location. Section 3 describes an inductive approach to gen-
erating location prediction models in ubiquitous computing
environments.
3. Inducing location prediction models

Many types of location recognition models can be learned. We
investigated probabilistic models such as dynamic Bayesian net-
works (DBNs), general Bayesian networks (GBNs), tree augmented
Naïve Bayesian networks (TANs), and Naïve Bayesian networks
(NBNs). Refer to appendix for more details about Bayesian net-
works that were considered in this study.
3.1. Bayesian models for location prediction

A Bayesian network approach is well suited for generating pre-
dictive models in a real-world domain because of its ability to deal
with the uncertainty inherent in every facet of human life. Bayes-
ian networks are probabilistic models in the form of directed acy-
clic graphs (Pearl, 2000). Nodes in Bayesian networks represent
variables or propositions (e.g., the occurrence of an event or a fea-
ture of an object). Likewise, links represent causal or informational
dependencies among variables, and are quantified by the condi-
tional probability of a node, given its parents. If a node does not
have parents, it is associated with a prior probability. Since Bayes-
ian networks represent causal or informational dependencies
among variables, variables that are not influenced by any other
variables but do exert influence on other variables are positioned
at the top layer of the network. Similarly, variables that are influ-
enced by some variables and also influence other variables are
positioned in the middle layers of a network, while variables that
are influenced by some variables but do not influence any other
variables are positioned at the bottom layer. In such a representa-
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tion, it is possible to infer the probability of any combination of
variables without having to represent the joint probabilities of
the variables.

In general, there are five classes of Bayesian networks. NBN
(Witten & Frank, 2005) is the simplest Bayesian network that has
one parent node of all other nodes. The parent node is often called
a class node. No other links exist in the network. NBN is useful for
preliminary predictive model induction due to its naïve indepen-
dence assumptions. TAN (Witten & Frank, 2005) is formed by add-
ing directional links between attributes in NBN. After removing the
class node in a TAN, the attributes should form a tree. GBN (Witten
& Frank, 2005) is an unrestricted Bayesian network which treats
the class node as an ordinary node. Therefore, the class node can
be a child node of some nodes. These Bayesian networks do not
provide direct mechanism for representing temporal dependencies
among attributes. However most of real-world events are changing
over time, which can’t be modeled by static Bayesian networks.
DBN (Murphy, 2002) provides a systematic way to model the tem-
poral and causal relationships among variables. A DBN is a Bayes-
ian network that represents variables with temporal
characteristics, and is composed of a sequence of General Bayesian
networks. In a DBN, each Bayesian network represents the state of
variables at different times.

3.2. GBN, TAN, and NBN model induction

For model induction, we adopted two different learning tech-
niques: those that are fully automated, and those that require
the knowledge provided by a domain expert. We adopt completely
automated approach to generate GBN, TAN, and NBN location pre-
diction models. During training phase, the following observable
attributes were recorded:

� User previous actions: user previous action represents actions
that a user took right before a user performs current actions.
� User current actions: user current action represents actions that

a user currently takes.
� User locations: user location represents a location in which a

user current action is performed.
� Routes: routes represent that a user can take to arrive the cur-

rent location. The maximum number of routes that a user can
take was seven in our experiment. For example, route 1 is the
first route that a user can take from the previous location to
Fig. 1. GBN and TAN location prediction models: (a) learned GBN model using Weka m
get to route 2 and route 2 represent the second route that a user
can take from route 1 to get to route 3 and so on. Therefore,
routes 1–7 comprises a location path from previous location
to current location.

Once the dataset is prepared, the user data were loaded into the
WEKA machine learning tool (Witten & Frank, 2005), structures
and conditional probabilities of GBN, TAN, and NBN were learned,
and tenfold cross-validation analyses were run on the resulting
models. The entire dataset was used to generate several types of
location prediction models. Fig. 1 shows the induced GBN and
TAN location recognition models. Because most of users did not re-
cord route 6 and 7, nodes for representing route 6 and 7 were miss-
ing in the induced GBN.

3.3. DBN model induction

The model induction for DBN proceeds in four phases: (1) identify
domain variables; (2) examine dependencies between the domain
variables and the manner in which these domain variables change
over time; (3) describe how the conditional probability distributions
are constructed from the user’s action and location data; and (4) pro-
cedurally develop the belief update. The domain variables that were
used in DBN model included high-level actions (such as talking,
walking, and moving) and places (such as a classroom, home, and
outdoors) in which users could perform these actions. After indenti-
fying domain variables, their dependencies are determined.

The DBN shown in Fig. 2 represents dependencies between ac-
tions and locations. Because current actions are affected by preced-
ing actions, there is a directional link from a user action at time
t � 1 to user action at time t. This temporal link models the fact
that the domain variables change over time. Further, links from
user location nodes to user action nodes represent the fact that a
user action is executed in some location.

Once the structure of the DBN is specified, P(User Action tjUser
Action t � 1), P(User Action tjUser Location t), and P(User Location
tjUser Location t � 1) are estimated from the dataset in a training
phase. Because all possible configurations of variables cannot typ-
ically be observed, conditional probabilities of some variables can-
not be easily computed from data. For example, if a network has N
nodes (variables), and even if each node can have discrete binary
values, the total number of possible configurations is 2N. Therefore,
it is often the case that sufficient data are not available to learn the
achine learning tool and (b) learned TAN model using Weka machine learning tool.
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conditional probabilities. In order to avoid zero probabilities, the
method of addition of a small number to each cell of sparse condi-
tional probability tables is often employed (Hu, 1999). Often called
a flattening constant (denoted by a), this number can be added
either only to empty cells, or to all cells in the table. After adding
a to cells (either only empty cells or all cells), conditional probabil-
ities are recomputed. While different choices of a have been pro-
posed (e.g., adding 1/2 to all cells or adding 1/D to empty cells
where D is the total number of cells), we chose to reevaluate con-
ditional probabilities after adding 1 to all cells in the conditional
probability tables for the DBN location prediction model.

In the testing phase, the DBN location prediction model begins
to make a prediction about the user’s location at time 1 by creating
slice 1. In slice 1, only two nodes exist: User Action 1 and User
Location 1, which comprise all of the available information at the
time point. Therefore, we set the current action as the evidence
for the node User Action 1 and compute the posterior probability
P(User Location 1jUser Action 1 = observed current action) by using
a belief update algorithm, of which any belief update algorithms
can be used for propagating beliefs through the DBN. The DBN
location prediction model subsequently chooses the location with
the maximum posterior probability value as the most probable
user location at time 1. At time 2, the DBN location prediction mod-
el creates another slice for time 2. At this point in time, the DBN
location prediction model consists of two slices for times 1 and
2. The evidence that now exists is the user action and location at
time 1 and the user action at time 2. From this information, the
DBN prediction model makes a prediction about the user location
at time 2 by setting this information as evidence and computing
the posterior probability P(User Location 2jUser Location 1 = the
observed location at time 1, User Action 1 = the observed action
at time 1, User Action 2 = the observed action at time 2). Now,
the location with the maximum posterior probability value be-
comes the most probable user location at time 2. We describe this
inference process below.

For i = 1,. . ., number of folds:

1. Partition the dataset into training set i and

test set i

2. Estimate the following prior and conditional

probabilities using training set i:

PðL1Þ; PðLt jLt�1Þ; PðAt jLtÞ;PðAtjAt�1Þ;

where At and Lt represent user action and

location at time t, respectively.
3. For j = 1,. . ., number of time slices:

3.1 Create a slice for time j

3.2 Set the evidence that has been observed

so far:

If j==1 then:
A1  a1
Else:
A1  a1 L1  l1

� � � � � �
Aj  aj Lj�1  lj�1
3.3 Compute the following posterior

probability by using any DBN belief update

algorithm:

PðLjjl1:j�1; a1:jÞ;

where the action sequence a1, a2, . . . , aj is denoted by
a1:j and the location sequence l1, l2, . . . ,lj�1 is

denoted by l1:j�1.
3.4 Choose the most probable action L

⁄
as

follows:

L�  argmaxPðLj jl1:j�1 ; a1:jÞ

4. Output the predicted location sequence.
4. Evaluation

In a formal evaluation, data were gathered from 336 subjects
(undergraduate students at a private university in Seoul, Korea).
In order to fully engage participation of subjects, two percent of
the subject’s total class points were given as extra credit points.
There were 125 female and 211 male participants of varying ages.
The average age of female subjects was 20.7 years old, while the
average age of the male subjects was 22.6 years old.

After filling out a demographic survey, participants were asked
to record their daily routines (e.g., what they are doing and where
they are at when they perform a particular action) on campus over
a period of two days. Recordings were started when the subjects
arrived at school and ended when they left school for the day. In
order to obtain the dataset, we employed a time diary, which in
our case was a handwritten log in which the subject writes the
start and end times of each action, the location in which the action
was performed, and routes that the subject take in order to arrive
at the location. Campus location codes, route codes, and action
codes were provided to the subjects in order to help them record
their daily routines. Initially, there were 84 distinct actions, 25 dis-
tinct routes, and more than 30 distinct locations that subjects
could choose from, and our subjects recorded a total of 30 distinct
locations. We obtained a total of 672 days worth of activity data.
Daily activity data was removed if the length of time recorded
was too short (e.g., only one action was recorded) or if subjects
recorded a route that they could not take at the current route or
location. As a result, 266 out of 672 days of activity data were used
in the formal evaluation. The examples of actions, locations, and
routes that users can take from were described in Table 1.



Table 1
Examples of possible values of domain variables.

Attribute Examples of possible values

Action Attending class/attending a seminar, Preparing for exam/doing homework, Doing things that are not listed, Eating lunch, Talking to friends, Studying class
materials/self studying, Eating snack/smoking/having tea time, Doing club activities, Surfing the internet, doing a part time job, buying stuffs, meeting with
a professor, etc.

Location 600th anniversary building, basketball court, Bicheondang, business building, central library, Dasan hall of economics, east gate, faculty hall, front Gate,
Geumjandi square, Hoam hall, international hall, large playground, law building, Myeongnyundang, Oacknyujeong, outside the campus, rear gate, student
union building, Suseon hall, Suseon hall annex, Toegye hall of humanities, Yanghyeongwan, Yurimhoegwan, etc.

Route A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W

Table 2
Evaluation results.

Model DBN GBN TAN NBN

Average accuracy (%) 72.67 45.88 69.29 55.27
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4.1. Results

DBN, GBN, TAN, and NBN were induced from data collected
using the method described above. The induced models were eval-
uated using a tenfold cross-validation. For the DBN model, the
structure was fixed; conditional probabilities were learned. For
the GBN, TAN, and NBN models, the structure and conditional
probabilities were learned. Table 2 reports the overall results of
DBN, GBN, TAN, and NBN location recognition models. The per-
centages refer to correctly classified instances. The highest per-
forming model was a DBN location recognition model and the
second highest performing model was a TAN location recognition
model. The DBN model outperformed all other three models (F-sta-
tistics = 29.65, p < 0.00001). The accuracy of GBN and NBN seems
low compared to the accuracy of DBN and TAN models, but they
performed significantly better than chance, which was 3.33% based
on the presence of 30 candidate locations. The results suggest that
the DBN location prediction model reported on here is able to accu-
rately identify user locations.

The experiment has two important implications for the design
of location prediction modeling in ubiquitous computing environ-
ments. First, by monitoring a sequence of user locations and ac-
tions in the ubiquitous computing environment, induced models
can make accurate predictions of forthcoming user locations. Sec-
ond, using models that can make predictions of user location cre-
ates a significant window of opportunity for the ubiquitous
environment to take corrective action; context-prediction models
offer an improvement over context-aware approaches that predict
only current contexts of users.
4.2. Discussion

There are many issues to be discussed from the results above.
First, one of the research questions raised in this study was how
the ubiquitous decision support system capable of context-predic-
tion mechanism can provide more accurate decision support. In
this sense, by using a real data from college students, the proposed
DBN was compared with other Bayesian network models such as
GBN, TAN, and NBN. Considering the fact that the DBN showed sig-
nificantly improved accuracy of context-prediction, we conclude
that the DBN can be incorporated into the ubiquitous decision sup-
port systems as a reliable context-prediction mechanism. With the
users’ location in the future contexts being predicted accurately,
the ubiquitous decision support systems can be used as a reliable
source of providing timely and reasonable decision support.

Second, old-aged users and handicapped people could also ben-
efit from the proposed context-prediction mechanism. Where the
ubiquitous decision support systems can contribute to social goods
most critically is the health information systems for the aged and
handicapped people. Since their future locations can be reliably
estimated by the proposed context mechanism, those who need
care due to their partly handicapped are able to rely on this con-
text-prediction mechanism.

Third, the proposed context-prediction mechanism may also be
useful for enhancing the quality of transportation systems. Based
on the information about the current location and the goal of a par-
ticular user, transportation systems equipped with the proposed
context-prediction mechanism may be able to assist drivers more
effectively by inferring possible preferred routes and by providing
customized route suggestions for drivers, as well as warning the
drivers about possible dangers by predicting their future context.

5. Conclusion and Future work

Context prediction is an important problem in ubiquitous com-
puting environments. Accurately predicting user contexts could
greatly improve the quality of user satisfaction in every aspect of
daily life, particularly in the use of ubiquitous decision support sys-
tems. By drawing inferences about user locations, ubiquitous deci-
sion support systems should not only automatically detect a user’s
current situation, but also forecast the user’s likely future location.
Such location prediction systems will help users make decisions
quickly and efficiently by providing the most suitable services.

By utilizing the DBN, this paper has shown that the DBN has
potentials to be used as a context-prediction mechanism for the
ubiquitous decision support systems. The findings reported here
contribute to the growing body of work on context prediction for
ubiquitous computing environments. In the future, it will be useful
to investigate much richer context information such as a user’s
intention, or emotional states to predict a user’s future context.
Secondly, evaluating the resulting models as a runtime component
in ubiquitous environments will be an important next step in the
development of context-prediction applications. Thirdly, it will
be important to investigate location prediction models that can
make ‘‘early’’ predictions of user location. Early prediction would
allow ubiquitous systems adequate time to prepare for services
for a particular future location of the user or to suggest alternative
locations before users move to dangerous locations.

Appendix A

A Bayesian network is a direct acyclic graph (DAG) which repre-
sents the dependencies among variables and gives a compact rep-
resentation of full joint probability distributions. Each node in a
Bayesian network is annotated with probability distribution. The
nodes of the network represent a set of random variables and a di-
rect link connects a pair of nodes. The link from A to B can indicate
that A causes B or A has a direct influence on B. The graph structure
specifies the conditional independence relationships among vari-
ables in the domain. The conditional independence relationships
encoded in a Bayesian network can be stated as follows: a node
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Fig. 3. (a) Naïve Bayesian network. (b) Tree augmented naïve Bayesian network. (c)
General Bayesian network. (d) Dynamic Bayesian network.
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is conditionally independent of its non-descendant, given its par-
ents; a node is conditionally independent of all other nodes in
the network, given its parents, children, and children’s parents.

In general, there are four classes of Bayesian networks: Naïve
Bayesian networks (NBNs), tree augmented Naïve Bayesian net-
works (TANs), general Bayesian networks (GBNs), and dynamic
Bayesian networks (DBNs) (see Fig. 3). A NBN is the simplest
Bayesian network that has one parent node of all other nodes. No
other links exist in the network. A TAN is formed by adding direc-
tional links between attributes in a NBN. After removing the class
node C, the attributes should form a tree. A GBN is an unrestricted
Bayesian network which treats the class node as an ordinary node.
Therefore, the class node can be a child node of some nodes. These
Bayesian networks do not provide direct mechanism for represent-
ing temporal dependencies among attributes. However most of
real-world events are changing over time, which cannot be mod-
eled by static Bayesian networks. A DBN is a Bayesian network that
represents attributes with temporal characteristics. A DBN also
treats the class node as an ordinary node. The DBN is composed
of a sequence of static Bayesian networks. Each static Bayesian net-
work represents the state of variables at different time.

Once the graph structure is constructed, we need to specify a
conditional probability table (CPT) which lists the probability that
Fig. 4. A GBN, showing both the network structure and the
the child node takes given each combination of values of its par-
ents. Consider the following example, in which all nodes are binary
(see Fig. 4). The topology of the GBN shows that the event ‘‘grass is
wet’’ depends on whether the water sprinkler is on or off and it is
raining or not. The event ‘‘the water sprinkler is on’’ depends only
on whether it is cloudy or not. From the conditional independence
relationships encoded in the network, we can see that the node
‘‘Wet Grass’’ is conditionally independent of ‘‘Cloudy’’, given
‘‘Sprinkler’’ and ‘‘Rain’’. The strength of the relationship among
variables is represented as the probability values in the table. For
example, we see that P(W = truejS = true, R = false) = 0.9 because
if the water sprinkler is on or it is raining, then it is likely that grass
is wet.

Now, you may have the following question: ‘‘Where the graph
structure and CPT of each variable come from?.’’ Both the structure
of the network and the CPT of each variable can be manually spec-
ified by a domain expert, because sometime, it is easy for a domain
expert to decide what direct influences exist in the domain and
CPTs as well. However, in most domains, the task of defining the
topology of the network is too complex for humans and in fact
the most challenging task in dealing with Bayesian networks is
defining the network structure. In this case, the network structure
and parameters of each CPT must be learned from data. We first
describe how parameters of each CPT can be learned, given the
structure. Then, we introduce learning the structure of Bayesian
networks.

Determining prior and conditional probabilities are crucial
steps in constructing Bayesian networks. If one can observe all pos-
sible configurations of variables and there are no hidden variables
in the network, then computing probability tables is merely count-
ing the number of occurrences of each configuration. However, be-
cause all possible configurations of variables typically cannot be
observed, conditional probabilities of some variables cannot be
easily computed from data. For example, if a network has N nodes
(variables) and even if each node can have discrete binary values,
then, at worst, the total number of possible configuration is 2N.
Therefore, it is often the case that sufficient data is not available
to learning the conditional probabilities. To avoid zero-probabili-
ties, adding a small number into each cell of sparse conditional
probability tables is often employed (Feng et al., 2009).

Learning the structure is much more difficult than learning
parameters. If data is missing or some of the nodes are hidden
conditional probability tables (Russell & Norvig, 2003).
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(not observable), then learning is much more difficult. However,
structure learning is essential because of its enormous usefulness
in various application areas. Structure learning is useful when prior
knowledge is unavailable and we want to discover underlying cau-
sal or informational relationships to infer knowledge about the do-
main. Structure learning is the model selection process of choosing
among possible models or hypotheses based on an objective func-
tion. An objective function measures how well the model can fit
the data. Because structure learning is inducing a directed acyclic
graph that best explains the given data, the number of possible
acyclic graphs given N variables is super-exponential in N (Murphy,
2002). Thus, designers of Bayesian networks often use heuristics to
avoid examining all possible structures or they begin with an ini-
tial proposed structure. The methods of inducing Bayesian net-
works from data include conditional independence (CI) based
algorithms and search-and-scoring based algorithms (Heckerman,
1995). The CI based approach is based on carrying out several con-
ditional independence tests on the data and building a Bayesian
network which agrees with the conditional independence test re-
sults. Examples of this approach include Wermuth–Lauritzen algo-
rithm (Wermuth & Lauritzen, 1983), boundary DAG algorithm
(Pearl, 1988), SRA algorithm (Srinivas, Russell, & Agogino, 1990),
constructor algorithm (Fung & Crawford, 1990), and PC algorithm
(Spirtes, Glymour, & Scheines, 1993). Search-and-scoring ap-
proaches start with a graph with no edges and then use some
search algorithm to add an edge to the graph. They use some scor-
ing criteria to see if the new structure is better than the old one. If
it is better, they keep the new one and try to add another edge.
Examples of this approach are Chow–Lie tree construction algo-
rithm (Chow & Liu, 1968), Rebane–Pearl polytree construction
algorithm (Rebane & Pearl, 1987), and K2 algorithm (Cooper & Her-
skovits, 1992). Once the graph structure and parameters of each
CPT are specified, we can answer all possible inference queries.
For example, consider the network shown in Fig. 4. Suppose we ob-
serve the fact that grass is wet. We could then ask which one is
more likely to be the cause for this: either it is raining or the water
sprinkler is on.

A lot of Bayesian software tools provide abilities to learn param-
eters and/or structure. Some Bayesian tools include API (Application
Program Interface) so that users can integrate the Bayesian program
into their code. Some tools are free and others are not. Most com-
mercial tools have free versions which are restricted in various ways.
One of the widely used Bayesian software is Hugin which was devel-
oped at the University of Aalborg. Hugin provides functionality of
both parameter and structure learning. The Hugin API is available
for the languages C++. Kevin Murphy conducted a survey of Bayesian
software tools. The survey covers basic feature of each software such
as platform, GUI, API, whether the software allow parameter
learning, structure learning or both, etc. The detail of the survey
can be found at http://www.cs.ubc.ca/�murphyk/Bayes/bnsoft. html.
Google’s list of Bayesian tools is also available at http://directory.
google.com/Top/Computers/Artificial_Intelligence/Belief_Networks/
Software/.
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